Computing twists of hyperelliptic curves ICTP Workshop on Hyperelliptic Curves

Davide Lombardo
(joint with E. Lorenzo-García)

Università di Pisa
07 September 2017

What's a hyperelliptic curve, really?

What's a hyperelliptic curve, really?

Definition

A (smooth, projective, geometrically connected) curve C over a field K is hyperelliptic if the canonical map is a 2-to-1 cover $C \rightarrow Q$ with Q of genus 0 .

What's a hyperelliptic curve, really?

Definition

A (smooth, projective, geometrically connected) curve C over a field K is hyperelliptic if the canonical map is a 2-to-1 cover $C \rightarrow Q$ with Q of genus 0 .

Remark $(\operatorname{char}(K)=0)$

If $Q(K) \neq \emptyset$, then $Q \cong \mathbb{P}_{K}^{1}$ and C admits a K-model of the form $y^{2}=f(x)$.

What's a hyperelliptic curve, really?

Definition

A (smooth, projective, geometrically connected) curve C over a field K is hyperelliptic if the canonical map is a 2-to-1 cover $C \rightarrow Q$ with Q of genus 0 .

Remark $(\operatorname{char}(K)=0)$

If $Q(K) \neq \emptyset$, then $Q \cong \mathbb{P}_{K}^{1}$ and C admits a K-model of the form $y^{2}=f(x)$. Otherwise, g is odd and C has a model of the form

$$
C:\left\{\begin{array}{l}
a X^{2}+b Y^{2}+c Z^{2}=0 \\
t^{2}=f(X, Y, Z)
\end{array} \subset \mathbb{P}_{1,1,1, \frac{g+1}{2}}(K)\right.
$$

Twists of curves

A twist of a curve C / K is another curve C^{\prime} / K such that $C_{\bar{K}} \sim C_{\bar{K}}^{\prime}$.

Twists of curves

A twist of a curve C / K is another curve C^{\prime} / K such that $C_{\bar{K}} \sim C_{\bar{K}}^{\prime}$.

Theorem

There is a one-to-one correspondence

$$
\text { Twists }(C / K) /\{K \text { - isomorphism }\} \longleftrightarrow H^{1}\left(\Gamma_{K}, \text { Aut }_{\bar{K}}(C)\right)
$$

Twists of curves

How does the correspondence work?

Twists of curves

How does the correspondence work?
If $C \xrightarrow{\varphi} C^{\prime}$ is a \bar{K}-isomorphism, the corresponding cohomology class is represented by

$$
\begin{aligned}
\xi: \quad \Gamma_{K} & \rightarrow \\
\sigma & \mapsto \operatorname{Aut}_{\bar{K}}(C) \\
& \mapsto\left(\varphi^{-1}\right) \circ \varphi
\end{aligned}
$$

Twists of curves

How does the correspondence work?
If $C \xrightarrow{\varphi} C^{\prime}$ is a \bar{K}-isomorphism, the corresponding cohomology class is represented by

$$
\begin{aligned}
\xi: \quad \Gamma_{K} & \rightarrow \\
\sigma & \mapsto \operatorname{Aut}_{\bar{K}}(C) \\
& \mapsto\left(\varphi^{-1}\right) \circ \varphi
\end{aligned}
$$

What about the other arrow, $\xi \mapsto C^{\xi}$?

Twists of curves

How does the correspondence work?
If $C \xrightarrow{\varphi} C^{\prime}$ is a \bar{K}-isomorphism, the corresponding cohomology class is represented by

$$
\begin{aligned}
\xi: \quad \Gamma_{K} & \rightarrow \\
\sigma & \mapsto \operatorname{Aut}_{\bar{K}}(C) \\
& \mapsto\left(\varphi^{-1}\right) \circ \varphi
\end{aligned}
$$

What about the other arrow, $\xi \mapsto C^{\xi}$? There's a recipe, but...

Twists of curves

How does the correspondence work?
If $C \xrightarrow{\varphi} C^{\prime}$ is a \bar{K}-isomorphism, the corresponding cohomology class is represented by

$$
\begin{aligned}
\xi: \quad \Gamma_{K} & \rightarrow \\
\sigma & \mapsto \operatorname{Aut}_{\bar{K}}(C) \\
& \mapsto\left(\varphi^{-1}\right) \circ \varphi
\end{aligned}
$$

What about the other arrow, $\xi \mapsto C^{\xi}$? There's a recipe, but...

Example

Using this naïve approach, MAGMA was unable to find a planar model for $C^{\xi}: y^{2}=-x^{8}+4 x^{7}-28 x^{6}+28 x^{5}+14 x^{4}+28 x^{3}-196 x^{2}+100 x-61$

Twisting non-hyperelliptic curves I

Given C / K non-hyperelliptic (of genus ≥ 3), there is a canonical embedding

$$
C \hookrightarrow \mathbb{P} H^{0}\left(C, \Omega_{C}^{1}\right) \cong \mathbb{P}_{K}^{g-1} .
$$

Twisting non-hyperelliptic curves

Given C / K non-hyperelliptic (of genus ≥ 3), there is a canonical embedding

$$
C \hookrightarrow \mathbb{P} H^{0}\left(C, \Omega_{C}^{1}\right) \cong \mathbb{P}_{K}^{g-1} .
$$

The automorphism group of C acts (by pullback) on the space of regular differentials on C

Twisting non-hyperelliptic curves

Given C / K non-hyperelliptic (of genus ≥ 3), there is a canonical embedding

$$
C \hookrightarrow \mathbb{P} H^{0}\left(C, \Omega_{C}^{1}\right) \cong \mathbb{P}_{K}^{g-1}
$$

The automorphism group of C acts (by pullback) on the space of regular differentials on $C \rightsquigarrow$ we have a Galois-equivariant embedding of Aut $\bar{K}_{K}(C)$ in $\mathrm{GL}\left(H^{0}\left(C_{\bar{K}}, \Omega_{C}^{1}\right)\right) \cong \mathrm{GL}_{g}(\bar{K})$

Twisting non-hyperelliptic curves II

Suppose given a non-hyperelliptic curve C / K (of genus ≥ 3) and a cocycle $\xi: \Gamma_{K} \rightarrow \operatorname{Aut}_{\bar{K}}(C)$.

Twisting non-hyperelliptic curves II

Suppose given a non-hyperelliptic curve C / K (of genus ≥ 3) and a cocycle $\xi: \Gamma_{K} \rightarrow \operatorname{Aut}_{\bar{K}}(C)$. Composing with Aut $\bar{K}^{(C)} \hookrightarrow \mathrm{GL}_{g}(\bar{K})$, we obtain a cocycle

$$
\xi_{L}: \Gamma_{K} \rightarrow \mathrm{GL}_{g}(\bar{K})
$$

Twisting non-hyperelliptic curves II

Suppose given a non-hyperelliptic curve C / K (of genus ≥ 3) and a cocycle $\xi: \Gamma_{K} \rightarrow$ Aut $_{\bar{K}}(C)$. Composing with Aut $_{\bar{K}}(C) \hookrightarrow \mathrm{GL}_{g}(\bar{K})$, we obtain a cocycle

$$
\xi_{L}: \Gamma_{K} \rightarrow \mathrm{GL}_{g}(\bar{K})
$$

Algorithm

- By Hilbert 90 , there exists $M \in G L_{g}(\bar{K})$ such that

$$
\xi_{L}(\sigma)={ }^{\sigma}\left(M^{-1}\right) \cdot M .
$$

Twisting non-hyperelliptic curves II

Suppose given a non-hyperelliptic curve C / K (of genus ≥ 3) and a cocycle $\xi: \Gamma_{K} \rightarrow$ Aut $_{\bar{K}}(C)$. Composing with Aut $\bar{K}^{(C)} \hookrightarrow \mathrm{GL}_{g}(\bar{K})$, we obtain a cocycle

$$
\xi_{L}: \Gamma_{K} \rightarrow \mathrm{GL}_{g}(\bar{K})
$$

Algorithm

- By Hilbert 90 , there exists $M \in G L_{g}(\bar{K})$ such that

$$
\xi_{L}(\sigma)={ }^{\sigma}\left(M^{-1}\right) \cdot M .
$$

- M induces a linear map $[M]: \mathbb{P}_{K}^{g-1} \rightarrow \mathbb{P}_{K}^{g-1}$.

Twisting non-hyperelliptic curves II

Suppose given a non-hyperelliptic curve C / K (of genus ≥ 3) and a cocycle $\xi: \Gamma_{K} \rightarrow \operatorname{Aut}_{\bar{K}}(C)$. Composing with Aut $\bar{K}^{(C)} \hookrightarrow \mathrm{GL}_{g}(\bar{K})$, we obtain a cocycle

$$
\xi_{L}: \Gamma_{K} \rightarrow \mathrm{GL}_{g}(\bar{K})
$$

Algorithm

- By Hilbert 90 , there exists $M \in G L_{g}(\bar{K})$ such that

$$
\xi_{L}(\sigma)={ }^{\sigma}\left(M^{-1}\right) \cdot M .
$$

- M induces a linear map $[M]: \mathbb{P}_{K}^{g-1} \rightarrow \mathbb{P}_{K}^{g-1}$.
- The image $[M](C)$ is a curve defined over K; from this, one easily obtains equations for C^{ξ}.

The hyperelliptic case

Suppose given a hyperelliptic curve C / K of genus $g \geq 2$ and a cocycle $\xi: \Gamma_{K} \rightarrow \operatorname{Aut}_{\bar{K}}(C)$.

The hyperelliptic case

Suppose given a hyperelliptic curve C / K of genus $g \geq 2$ and a cocycle $\xi: \Gamma_{K} \rightarrow$ Aut $_{\bar{K}}(C)$.
One can try to mimic the non-hyperelliptic case by embedding C in projective space via higher powers of the canonical bundle.

The hyperelliptic case

Suppose given a hyperelliptic curve C / K of genus $g \geq 2$ and a cocycle $\xi: \Gamma_{K} \rightarrow$ Aut $_{\bar{K}}(C)$.
One can try to mimic the non-hyperelliptic case by embedding C in projective space via higher powers of the canonical bundle. This can be computationally expensive $\left(H^{0}\left(C,\left(\Omega_{C}^{1}\right)^{\otimes 2}\right)\right.$ has dimension $\left.3(g-1)\right)$.

The hyperelliptic case

Input data

$$
C:\left\{\begin{array}{l}
a X^{2}+b Y^{2}+c Z^{2}=0 \quad \text { \&n } \quad Q(X, Y, Z)=0 \\
t^{2}=f(X, Y, Z)
\end{array}\right.
$$

The hyperelliptic case

Input data

$$
\begin{gathered}
C:\left\{\begin{array}{l}
a X^{2}+b Y^{2}+c Z^{2}=0 \quad \text { ~~ } \quad Q(X, Y, Z)=0 \\
t^{2}=f(X, Y, Z)
\end{array}\right. \\
\quad \xi: \Gamma_{K} \rightarrow \operatorname{Aut}_{\bar{K}}(C)
\end{gathered}
$$

The hyperelliptic case

Input data

$$
\begin{gathered}
C:\left\{\begin{array}{l}
a X^{2}+b Y^{2}+c Z^{2}=0 \quad \text { ~ } \quad Q(X, Y, Z)=0 \\
t^{2}=f(X, Y, Z)
\end{array}\right. \\
\xi: \Gamma_{K} \rightarrow \operatorname{Aut}_{\bar{K}}(C) \rightarrow \operatorname{Aut}_{\bar{K}}(Q)
\end{gathered}
$$

The hyperelliptic case III

(1) Using the anti-canonical model of Q, embed $\operatorname{Aut}_{\bar{K}}(Q)$ into $\mathrm{GL}_{3}(\bar{K})$

The hyperelliptic case III

(1) Using the anti-canonical model of Q, embed $\operatorname{Aut}_{\bar{K}}(Q)$ into $\mathrm{GL}_{3}(\bar{K})$
(2) Apply Hilbert 90 to split the cocycle, $\xi_{L}(\sigma)={ }^{\sigma}\left(M^{-1}\right) \cdot M$.

The hyperelliptic case III

(1) Using the anti-canonical model of Q, embed $\operatorname{Aut}_{\bar{K}}(Q)$ into $\mathrm{GL}_{3}(\bar{K})$
(2) Apply Hilbert 90 to split the cocycle, $\xi_{L}(\sigma)={ }^{\sigma}\left(M^{-1}\right) \cdot M$.
(3) In this way we obtain $Q^{\xi}(X, Y, Z)=Q(M(X, Y, Z))$, which fits into

The hyperelliptic case III

(1) Using the anti-canonical model of Q, embed Aut $\bar{K}_{\bar{K}}(Q)$ into $\mathrm{GL}_{3}(\bar{K})$
(2) Apply Hilbert 90 to split the cocycle, $\xi_{L}(\sigma)={ }^{\sigma}\left(M^{-1}\right) \cdot M$.
(3) In this way we obtain $Q^{\xi}(X, Y, Z)=Q(M(X, Y, Z))$, which fits into
(1) First guess:

$$
C:\left\{\begin{array}{l}
Q(X, Y, Z)=0 \\
t^{2}=F(X, Y, Z)
\end{array} \quad \rightarrow C^{\prime}:\left\{\begin{array}{l}
Q(M(X, Y, Z))=0 \\
t^{2}=F(M(X, Y, Z))
\end{array}\right.\right.
$$

The hyperelliptic case

First guess:

$$
C^{\prime}:\left\{\begin{array}{l}
Q(M(X, Y, Z))=0 \\
t^{2}=F(M(X, Y, Z))
\end{array}\right.
$$

The hyperelliptic case
 IV

First guess:

$$
C^{\prime}:\left\{\begin{array}{l}
Q(M(X, Y, Z))=0 \\
t^{2}=F(M(X, Y, Z))
\end{array}\right.
$$

Theorem (L. - Lorenzo-García)

There exist $\lambda \in \bar{K}^{\times}$, a finite extension L / K containing the coefficients of $\lambda F(M(X, Y, Z))$, and an element $e \in K^{\times}$such that a K-model of C^{ξ} is given by

$$
\left\{\begin{array}{l}
Q(M(X, Y, Z))=0 \\
e t^{2}=\frac{1}{[L: K]} \operatorname{tr}_{L / K}(\lambda F(M(X, Y, Z)))
\end{array}\right.
$$

where the trace is taken coefficientwise.

The hyperelliptic case
 IV

First guess:

$$
C^{\prime}:\left\{\begin{array}{l}
Q(M(X, Y, Z))=0 \\
t^{2}=F(M(X, Y, Z))
\end{array}\right.
$$

Theorem (L. - Lorenzo-García)

There exist $\lambda \in \bar{K}^{\times}$, a finite extension L / K containing the coefficients of $\lambda F(M(X, Y, Z))$, and an element $e \in K^{\times}$such that a K-model of C^{ξ} is given by

$$
\left\{\begin{array}{l}
Q(M(X, Y, Z))=0 \\
e t^{2}=\frac{1}{[L: K]} \operatorname{tr}_{L / K}(\lambda F(M(X, Y, Z)))
\end{array}\right.
$$

where the trace is taken coefficientwise. λ, L and e are all easy to compute.

Example

Input

$$
C:\left\{\begin{array}{l}
x^{2}+Y^{2}+Z^{2}=0 \\
t^{2}=X^{4}+Y^{4}+Z^{4}
\end{array} \subset \mathbb{P}_{1,1,1,2}(\mathbb{Q})\right.
$$

Example

Input

$$
\begin{aligned}
& C:\left\{\begin{array}{l}
X^{2}+Y^{2}+Z^{2}=0 \\
t^{2}=X^{4}+Y^{4}+Z^{4}
\end{array} \subset \mathbb{P}_{1,1,1,2}(\mathbb{Q})\right. \\
& \xi: \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{9}\right)^{+} / \mathbb{Q}\right)=\langle\sigma\rangle \rightarrow \quad \operatorname{Aut}_{\overline{\mathbb{Q}}}(C) \\
& \sigma \quad \mapsto \quad[X, Y, Z, t] \mapsto[Y, Z, X, t]
\end{aligned}
$$

Example

Input

$$
\begin{aligned}
& C:\left\{\begin{array}{l}
x^{2}+Y^{2}+Z^{2}=0 \\
t^{2}=X^{4}+Y^{4}+Z^{4}
\end{array} \quad \subset \mathbb{P}_{1,1,1,2}(\mathbb{Q})\right.
\end{aligned}
$$

Output

$$
\left\{\begin{aligned}
X^{2}+Y^{2}+ & Z^{2}=0 \\
-3 t^{2}= & -23\left(X^{4}+Y^{4}+Z^{4}\right)-12 X Z\left(X Y+Y Z+Z X+Y^{2}\right) \\
& +20\left(X Y^{3}+Y Z^{3}-Z X^{3}\right)+16\left(X Z^{3}-X^{3} Y-Y^{3} Z\right) \\
& -12 Y^{2}\left(X^{2}+Z^{2}\right)
\end{aligned}\right.
$$

Thank you!

